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Abstract  This paper presents the results of a blind test of the ability of 2 Feed-Forward Artificial Neural Network to
provide out-of-sample forecasting of Rainfall Run-off using real data. The results, while comparable with those
obtained using best methods currently available, arc surprising in that they cast some doubt upon the widely held
assumption that this hydrological system is by definition non-linear. The focus of the paper has been an easily
repeatable experiment applied to rainfall and runoff data for a catchment area; which particular catchment was not
revealed to the experimenters i.e., a blind experiment. To this end, a simple model has been specified, and the
architecture of the neural network and the data preparation procedures adopted are discussed in detail. The results are
presented and discussed in detail and the extent to which the system was found to be non-linear is quantified.

1. INTRODUCTION

The implementation of 2 feed-forward antificial neural
network model (ffann) for forecasting rainfall runoff
for a catchment normally requires a knowledge of the
relationship between rainfall to the catchment {input),
and the runoff or stream [lows within the catchment
(output). Frequently modets of various forms are used
in a predictive capacity to accept rainfall inputs, and
o predict the stream flows [Wheater ef ol 1993]
These models consist of empirical or statistically based
time series models such as those based on the unit
hydrograph, conceptual catchment-scale models such
as the Sianford Watershed model, THACRES
{Jakeman et al. 1990] and deterministic, spatially
distributed models such as SHE, TOPOG and HHDM.
The IHACRES model in particular has undergone
considerabic devclopment, and has been applied
widely to about 100 catchments in Australia. as well as
a range of hydrological methodologies worldwide.

Recently Minns and Hall [1996] have applied neural
networks in a hydrological setting and have obtained
promising results. However their experiments were
performed using a data set generated by a
mathematical model, rather than using the observed
behaviour of a phvsical caichment.

The aim of this study is to provide an easily repeatable
experiment requiring no experience in the application
of ffann or extensive knowledge of hydrology. The
aim is 1o develop a ffann 1o model a catchment, using
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the observed rainfall to predict the physical runoff. in
the first section of the paper, the architecture of the
ffann and the training method utilised are described in
detail. The preprocessing of the data has been kept to a
minimum, and a simple model has been specified on
the basis of the daia alone. The data set was obtained
by arrangement from the ANU's Center for Resource
and Environmental Studies without information which
would identify the catchment or a description of its
characteristics'. It consisted of daily observations of
the average temperafure in degrees, precipitation in
millimetres and stream flow in cubic metres per
second from 12/2/1972 to 27/4/19%0, some 06641
observations in iotal. The steps in preparing the daia
and selecting the training, test and acceptance S€1s are
also described and the model is trained on the fraining
set data. The model is then used in its predictive mode
to obtain 1096 one step ahead. unconditional out-of-
sample forecasts. The predictive performance of the
ffann is then analysed and compared with the
performance of other models, particularty the
IHACRES model which is known to comparg very
favourzbly with other models [Wei et al. 1996].
Finally, the extent to which the ffann is exploiting
non-linearities in the data is assessed.

"We gratefully acknowledge the assistance of
Dr S Schreider in making this data set available.



2. NEURAL NETWORK ARCHITECTURE

Figure 1 is a stylised representation of the typical
architecture of a muiti-layered (ffarm) of the kind
implemented in this study [Masters 1993:78]. The
network consists of sets of neurons organised in
hierarchical layers from the input layer at the bottom
to the output laver at the top. The input and output
layers require at lcast one neuron each. The input
layer performs no processing; it simply stores the input
values, x,, j=1....J. to be processed. Between the
input and output fayers is at least one “hidden layer”
of neurons. The network depicted in Figure | is
referred to as a three layered feed forward artificial
neural network, as it has one hidden layer and its
processes run exclusively from the output of one laver
to the successive layer. The values fed to the neurons
in the hidden layer nefy, h=1.. H, are the weighted
sum of the x; inpuis to which is added the bias neuron
by, h=1,..H. in the form:

ncih =

(H

J

wiox.+ by forh=1.  H,
where #={ wy,; }, is a matrix of the weights assigned
to the links between the input neurons and the hidden
layer neurons.

} outputs

H hidden

Figure 1t Architecture of a feed-forward neural
network

The ret, vector values are inputs {0 a nonlinear
activation function g{ ). the outputs of this function are
commoniy referred to as hidden neuron activations or
more formally as transiates of the activation function
g( ). Several forms of activalion function g() have
been discussed in the literature [Kalman and Kwasny
1992]. here, the hyperbelic tangent activation function
from will be used. The weighted sum, with weights
W, =1 H, of these activations are then offset by

oh*

the addition of another bias neuron bo to provide the
network output g,

H

0y = Z :;F!)h g(ﬁ@f}] P ba - (2)

h=1

where W ={ W, } Is a matrix of the weights between

the hidden laver neurons and the outpu! neuron.
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Sfann.

The output, 0o = 00(Xy , Xz.......%;), of the ffann can be
described as a surface above the (x;, Xg,......Xj)-plane of
inputs [Weigend 1991:16]. In time series forecasting,
this surface describes a function which could have
given rise to the time series used to train the aetwork,

2.1 Training

The appiication of a ffann depends upen the successful
implementation of a training procedure which will
gstablish the number of hidden neurons necessary io
balance the often conflicting requirements of accuracy
in training and out-of-sample generalisation. The
training of a Jfomm is in essence a method of
performing inductive inference.

The training procedure consists of finding the optimal
number, H, of hidden neurons, and associated weights
W and W and biases by and b, which result in a
closed form equation from which forecasts can bhe
generated. The most common method of Gnding the
number of hidden neurons is the cross validation
procedure {Vemuri and Rogers 1994]. This procedure
requires three data sets which are called the fraining
set, the fest set and the acceptance set.  The training
set is computationally involved in the training of the
The performance of the training network with
respect to this daita set  determines how the weights
and biases of the network are adjusted. This is an
Herative process referred to as supervised learning.

This process seeks to minimise the mean square global

crror E=E(H) where:

] 2
E(H}:WZ(O"{H) #f‘”) .

n=i

(3)

where T . n=1...N, are the expected or observed
outputs from the physical data, and O'(H) arc the
predictions by the ffann, Note that N is the number of
training samples in the iraining set, and the
tninimisation is over the weights and biases.

The rest set is used to monitor the abilily of the
training network to gencralise {le.  extrapclate) tfo
inputs it has not seen. The jfifann’s performance on
this data set is periodically monitored during the
training process and helps to determine whether to
increase or decrease the number of hidden neurons.
The acceptance sei is used to evaluate the performance
of the trained npetwork by means of out-of-sample
forecasts. [t is assumed that if the ffann provides
adequate performance ex-post there is an a priori case
that it will continue to do so ex-aure.

Training begins with a network which has relatively
few hidden neurons and the weighis and biases are
initialised with random numbers. This network is
then trained, using an iteralive algorithm which



continuously adiusts the weights and biases, until the
mean prediction error obtained over the fraining set
becomes asymptotic as shown in Figure 2; a stylised
representation of this process. This procedure is
repeated a moderate number of times (five has proven
adequate) to ensure that the ffann has not become
trapped in a local minimum of the mean predictive
error function.

t Mean prediction error

Gror g

Test sel error

Training set error

Number of epochs

Fipure 2;: Training sel error vs test set error

If the mean predictive error on the fest set, which is
periodically sampled, diverges from that on the
training set, as shown in Figure 2, the network has
been over trained and has begun to learn the
idiosyncrasies of the fraining set. In this case, a hidden
neuren is removed and the process is repeated. I the
error on the rest sel does not diverge from that of the
training set. an additional neuron is added, in the hope
that performance will be improved, and the process is
repeated.  The objective of this process is to find a
network architecture with just enough resources to
map the underlying relationship befween the network's
inputs and outputs. If the tesr set error diverges from
the fraining set error when wusing the minimum
number of neurons which will provide adequate
performance, then the fraining set and the resr set are
nol representative subsets of the entire population and
the size of the fraining sel must be increased [Masters
1993:183]. The acceptance data set is independent of
both the #raining sct and fest set, and its operation
with the neural network model in also different. The
training and test data set lead to changes in the
architecture, and to changes in the values of the
weights and biases. Neither the architecture nor the
values of the weights and biases are altered during

acceptance testing. The performance of the ffann is
evaluated using the independent acceptance data set,
where this data is not used to further develop the
ffann. This is clearly a more siningent test of the
performance of the ffann, than one which allows the
network model to be retrained every fime a new data
observation (in the acceptance set) becomes available.

3. THE EXPERIMENT

The data supplied was analvsed on a yearly basis, in
terms of mean, standard deviation and range. and
some of these results are shown in Table |, The data
for years 1974, 1984 and 1987 were set aside and
together conslitute the acceptance set upon which the
performance of the network was tesied. These three
years were selected because in terms of their mean,
standard deviation and range, they fall in the top
(3974) the bottom (1987} and the middle {1984) of the
data set available and should give some indication of
the performance that could be expected from the
network over an extended period. From the remaining
data, two subsets, the fraining set and the fes! set, were
extracted. These two data sets were selected so as to be
statistically representative of the eniire data set, as
indicated by the various statistics in Table . The three
data sets were then scaled into the effective range of
the ffann activation function, g(): in this case -0.9 1o
0.9, the effective range of a hyperbolic tangent
[Masters 1993].

Let t represent time in days, and assume that the
stream flow, F.y, on day t+], will be some unknown
non-linear function of the stream flow, the
precipitation and the temperature cbserved on previous
daysie ondayst -1, 1-2..... Consider the model.

FoF ..Wn(F/F_on(F_ 7 F_),
F‘ - t (2] { -1 i—i -2 } 4
f(P;,PwT} @

where: F, = Strecam Flow at time t
P, = Precipitation at time §
T, = Temperature at time i

and the terms In(F, / F) are the relative rates of

Table 1: Data Sct Statistics

Data Sets Mean Standard Deviation | Range
TEMP PRECIP FLOW! TEMP PRECIP FLOW|TEMP PRECIP FLOW N
Test Set 14,5340 2,093 2709 | 6.135 5629 5200 {30350 62300 79398 | 1109
Training Set 14336 1.935 2.851 6.244 5534 3806 30,200 68.900 102.199) 1109
14365 2.269 28351 6.167 6248 5337 {31,300 73000 102.19%]5542

Avatiable Data

1974 Set [4.138 3389 11.960) 3813 894%  12.639(23.400 70200 78.020 % 363
1984 Set 13253 2474 2876 5.282 7.204 4209 (24750 61200 24963 | 366
1987 Set 13.818 1862 1310 5.641 5238 1.648 |25.250 31.600  9.607 | 365

Acceptance Set | 13736 2.642 3446 | 5590 7.220 9033 [25.650 70.200 7893511096
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1987 Qut-Of-Sample Rainfall-Runoff Forecasts
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Figure 3: 1987 Out-of-Sample Rainfall-Runnoff Forecasts

The exient to which the observed errors are a
consequence of the mode! being unconditional, can be
quantified, using ordinary least squares (OLS)
regression. by regressing the residuals on the observed
precipitation at time t+1 as shown in Table 3.

This regression indicates that 33% of the error of the
model can be explained by this ex ante precipitation.
This problems could perhaps be addressed by
generating conditional forecasts, the accuracy of which
would depend upen how reliably the precipitation at
time t+1 could be anticipated. The greatest weakness
of the model is that the absolute magnitude of the
errors is cleariy a function of the average stream flow
in the year being forecast. Ideally the errors would be
of uniform magnitude regardless of the year being
forecast. This problem could perhaps be overcome by
biasing the fraining set in favour of years presenting
extreme values. or including a year to-date moving
average as an explanatory variable.

Finatly, the extent to which the ffann is exploiting the
hypothesised non-linearities in the model specified,
needs to be quantified. To this end, an estimate of an
QLS regression cquation can be obtained using the
training data sgt of the ffamn. The results of this
experiment are provided in Table 4 where not only has

the performance of the OLS model estimated upon the
Iraining set been maintained out-of-sample, the resulis
mirror those obtained using the ffanr in almost every
respect.

This would indicate that the ffann has not found the
anticipated non-lincarities in the data sct. This can be
further investigated by using a variation on the Ry
statistic [Weigend ef o/, 1950:20] given by,

R = Residual Vanance(nonlinear)
¥ Residual Variance(linear)

(6

where the denominator is the residual variance of a
linear neural network., Now replace the linear network
with OLS estimates of the model fitted to the training,
lest and acceptance data sets used in this experiment,
The ratio of the remaining variances between the
fourteen hidden neuron ffann and the OLS estimation
are:

Ry {train}=0.99
R, {test)=1.16
Rulacceptance)=1.10

While these resuits do indicate that the ffann has not
been over trained, they clearly demonstrate that the

Table 3 Ordinary Least Squares Estimation of Precipitation ¢+1 on Residuals.

Coefficients Standard Error t Stat P-value
Intercept (.9636123 {.114894 8.387065 1.32216E-16
Ry -0.34847 0.014907 -23.3763 2.47428E-98
R Square 0333314 Adjusted R Square 0.332704
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4, RESULTS

t
=

- ﬁf

F= Observed Flow,
F = Predicted Flow, and

where:

change in the stream flow from day to day,
model necessitates a ffann with seven inputl neurons,
for the seven independent variables in the fuaction £
and one oatput neuron. The training and rest data sets
from Table 1. were used in training the network, and
resulted in an optimal architecture of H=14 hidden
neurons. The values of the weights and biases are not
given here but are available from the corresponding

this

F = Mean Observed Flow.

study

Once the nerwork has been irained, it is in fact 2
closed form equation expressed in terms of its
activation function. Thus the neural network model,
trained on a data set which entirely excludes data from
the vears 1974, 1984, and 1987, remains unchanged
throughout the forecasting test; the values of the
weights and biases are no longer adjusted.
generation of the out-of-sample forecasts as the output
of the network involves no more than the preseatation
of the independent variables as input to the network.
so  generated in
unconditional and strictly out-of-sample.

The results of this experiment are presented in
Table 2, and Figure 3 shows the results for the year
1987. Table 2 contains the mean of the residuals
(BIAS) the mean absolute error (MAE). the mean
square error (MSE), the root mean square errof
(RMSE), the coefficient of efficiency E, and the
coefficient of determination R®. Schreider et al.
[1596:870] note that the E statistic quantifies the
“proportion of observed stream discharge variance
explained by the model”, and is defined as

This

The

are

In the results for the acceptance set in Table 2, the
negative sign of the BIAS indicates that the model
tends to overestimate the stream flow, while an R of
0,87 indicates that the prediciions cluster around a
regression line indicative of perfect forecasts. Note
that the acceptance set, which was designed to include
the extreme values of vears 1974 and 1987 out
performs the fest set which is statistically similar to
the fraining set. in terms of its Bias, R° , and E
statistics. In the results for the individual years which
make up the acceptance set, note that the magnitude
of the forecasting error is a function of the average
stream flow in the individual yvears. This can be seen
by comparing the RMSE for these three years in Table
2 with their average flow rates in Table 1. Figure 3
indicaies that a similar pattern is apparent, a
substantial number of large errors are associated with
sudden increases in the stream flow. While this patiern
is consistent across all three years, it is interssting {0
compare the performance of the years 1974 and 1987
which represent the extremes of the data set, with the
performance of the model for 1984 which represents
an average year. In both 1974 and 1987 there is a
significant decline in performance of the model
compared to the test set in terms of the explanatory
value of its predicted flow rates, R? , and in the ability
of the model to explain the variance in the stream flow
as indicated by the E statistic. In contrast, the resuits
for 1984 in terms of the R® and E statistics, does
outperform the fest set results.

Turning to the errors, with the exception of the MAE
which is marginally poorer, the abselute magnitude of
the errors, in terms of the MSE and RMSE, are
significantly smailer than those of the fest set. This
would indicate that the frequency and magnitude of
the comparatively larger error in 1984 was some what
less than that indicated by the representative sample,
ie., the test set. Cver all, the performance of the
model, is, in terms of the BIAS and the E statistic,
comparable with the THACRES model of Schreider ef
al. [1996:869] and the results obtained by Minns and
Hall [1996:411], using anificially generated data,
when that model is tested out of range.

Table 2: Data Sei Statistics

Data Sets Pean Standard Deviation Range

“"TTEMP PRECIP FLOW| TEMP PRECIP FLOW|TEMP PRECIP FLOW | N
Test Set 14,540 2.093 2709 | 6.155 5,629 5200 130350 62.300 79398 | 1109
Training Set 14336 1935 2851 6.249 5534 5.806 |30.200 68.900 102.199[1109
Available Data | 14365 2269 2825 6.167 6248 5557 [3L300 75900 102.199]3542
1974 Set 14.138 3589 11960} 5813 8941 12.659(23.400 70:200 78.020{ 363
1984 Set 13.253 2474 2876 | 5.282 7204 4209 {24750 61.200 24.965 ] 366
1987 Set 13.818  1.862 1.510 ) 3.641 5258 1.648 |25.230 31600 9.607 | 365
Acceptance Set | 13736 2642 5446 | 5.590 7320 9.033 125650 76200 78935 | 1096
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Table 4: ffann-Out-Of-Sample Forecasts

=

[ffann BIAS MAE MSE RMSE E R-
Training Set 0.000415 0675938 378345 1945109 0883898  0.941225
Test Set 0.178978  0.820467  9.029704 3.004947 0.743961 0.865782
1974 Set 0.509082 2969363 32859336 7270444 0.669673  0.819712
1984 Set -0.339408  0.934415 3.653841 1.911502 0.793245 0.896662
1987 Set -0.329609 0592354 0.956673  0.978097 0.647099  (.8405680
Acceptance Set -0.053572  1.498196 19.142479 4.373212 0.765237 0.874799
BIAS= Mean of the residuals. MAE= Mean absolute error.

MSE= Mean square error. RMSE=Root mean square error.
E=Coefficient of efficicncy R*=Coefficient of determination.

neural network has simply performed OLS by
iteration; i.e., it is making no use of non-linearitics in
the data. Given that this ffann had 181 potentially
cffective parameters with which (v exploit non-
linearities in the data this experiment is indicative of
the possibility that the system modelled is in fact
essentially linear one step ahead. While this does not
prove that the system is linear one step ahead, or that
the system is itself linear, it does indicate that
forecasting crrors can not be simply attributed to
presumed non-linearities in the system rather than to,
for example, measurement errors in the data collection
process, or inadequate sampling rates,

5 CONCLUSION

This study provides an introduction to the application
of ffann to time series forecasting in hydrology. The
results suggest that ffanns can provide performance
comparable with current methods. For the data set
considered, considerable doubt is cast upon the
assumption that this system is by definition non-linear.

As the experiment was designed to provide results
which could be considered representative rather than
optimal. several possibilities for improvement suggest
themselves. The differences in the flow rate could be
forecast rather than the flows themselves, the inputs
could be averaged to smooth out the noise, calculated
variables for effective rainfall could be included as
inputs, lhe network model could be applied to the
residuals of existing models; the possibilities are
endless.
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